1,165 research outputs found

    Drag force on a sphere moving towards an anisotropic super-hydrophobic plane

    Full text link
    We analyze theoretically a high-speed drainage of liquid films squeezed between a hydrophilic sphere and a textured super-hydrophobic plane, that contains trapped gas bubbles. A super-hydrophobic wall is characterized by parameters LL (texture characteristic length), b1b_1 and b2b_2 (local slip lengths at solid and gas areas), and ϕ1\phi_1 and ϕ2\phi_2 (fractions of solid and gas areas). Hydrodynamic properties of the plane are fully expressed in terms of the effective slip-length tensor with eigenvalues that depend on texture parameters and HH (local separation). The effect of effective slip is predicted to decrease the force as compared with expected for two hydrophilic surfaces and described by the Taylor equation. The presence of additional length scales, LL, b1b_1 and b2b_2, implies that a film drainage can be much richer than in case of a sphere moving towards a hydrophilic plane. For a large (compared to LL) gap the reduction of the force is small, and for all textures the force is similar to expected when a sphere is moving towards a smooth hydrophilic plane that is shifted down from the super-hydrophobic wall. The value of this shift is equal to the average of the eigenvalues of the slip-length tensor. By analyzing striped super-hydrophobic surfaces, we then compute the correction to the Taylor equation for an arbitrary gap. We show that at thinner gap the force reduction becomes more pronounced, and that it depends strongly on the fraction of the gas area and local slip lengths. For small separations we derive an exact equation, which relates a correction for effective slip to texture parameters. Our analysis provides a framework for interpreting recent force measurements in the presence of super-hydrophobic surface.Comment: 9 pages, 5 figures, submitted to PRE; EPAPS file include

    Low-latency video transmission over high-speed WPANs based on low-power video compression

    Get PDF

    Link Graph Analysis for Adult Images Classification

    Full text link
    In order to protect an image search engine's users from undesirable results adult images' classifier should be built. The information about links from websites to images is employed to create such a classifier. These links are represented as a bipartite website-image graph. Each vertex is equipped with scores of adultness and decentness. The scores for image vertexes are initialized with zero, those for website vertexes are initialized according to a text-based website classifier. An iterative algorithm that propagates scores within a website-image graph is described. The scores obtained are used to classify images by choosing an appropriate threshold. The experiments on Internet-scale data have shown that the algorithm under consideration increases classification recall by 17% in comparison with a simple algorithm which classifies an image as adult if it is connected with at least one adult site (at the same precision level).Comment: 7 pages. Young Scientists Conference, 4th Russian Summer School in Information Retrieva

    Uncoordinated Multi-user Video Streaming in VANETs using Skype

    Get PDF

    An Energy-efficient Live Video Coding and Communication over Unreliable Channels

    Get PDF
    In the field of multimedia communications there exist many important applications where live or real-time video data is captured by a camera, compressed and transmitted over the channel which can be very unreliable and, at the same time, computational resources or battery capacity of the transmission device are very limited. For example, such scenario holds for video transmission for space missions, vehicle-to-infrastructure video delivery, multimedia wireless sensor networks, wireless endoscopy, video coding on mobile phones, high definition wireless video surveillance and so on. Taking into account such restrictions, a development of efficient video coding techniques for these applications is a challenging problem. The most popular video compression standards, such as H.264/AVC, are based on the hybrid video coding concept, which is very efficient when video encoding is performed off-line or non real-time and the pre-encoded video is played back. However, the high computational complexity of the encoding and the high sensitivity of the hybrid video bit stream to losses in the communication channel constitute a significant barrier of using these standards for the applications mentioned above. In this thesis, as an alternative to the standards, a video coding based on three-dimensional discrete wavelet transform (3-D DWT) is considered as a candidate to provide a good trade-off between encoding efficiency, computational complexity and robustness to channel losses. Efficient tools are proposed to reduce the computational complexity of the 3-D DWT codec. These tools cover all levels of the codec’s development such as adaptive binary arithmetic coding, bit-plane entropy coding, wavelet transform, packet loss protection based on error-correction codes and bit rate control. These tools can be implemented as end-to-end solution and directly used in real-life scenarios. The thesis provides theoretical, simulation and real-world results which show that the proposed 3-D DWT codec can be more preferable than the standards for live video coding and communication over highly unreliable channels and or in systems where the video encoding computational complexity or power consumption plays a critical role

    Temporal scalability comparison of the H.264/SVC and distributed video codec

    Get PDF
    corecore